Перевод: с русского на все языки

со всех языков на русский

характеристики процесса горения

  • 1 характеристики процесса горения

    1. combustion characteristics

     

    характеристики процесса горения

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > характеристики процесса горения

  • 2 характеристики регулирования процесса горения

    1. combustion control characteristics

     

    характеристики регулирования процесса горения

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > характеристики регулирования процесса горения

  • 3 характеристики


    characteristics, performance
    -, боевые (ла), летные — combat performance

    afterburning is used to improve the combat performance.
    -, взлетно-посадочные — takeoff and landing performance
    -, взлетные — takeoff performance
    мокрый снег, лужи и лед могут отрицательно влиять на взлетные характеристики. — wet snow, standing water, and ice can adversily affect takeoff performance.
    - взлетные (параграф разд. 5 рлэ) — takeoff procedures and speeds
    - винтомоторной группыpower plant performance
    -, внешние (пд) — full-throttle characteristics
    характеристики, снимаемые при полностью открытом дросселе, с изменением нагрузки двигателя при стендавых испытаниях. — the characteristics taken with fully-open throttle valve of an engine during the engine bench test.
    -, высокие — high performance
    -, высокие летные — high flight performance
    -, высотно-скоростные — altitude-airspeed performance
    -, высотные (самолета) — altitude performance
    -, высотные (дв.) зависимость тяги, удельной тяги и удельного расхода топлива от высоты полета при постоянном числе оборотов и постоянной скорости полета. — engine altitude performance, thrust (and fuel consumption) versus altitude curve
    - горизонтального полетаlevel flight performance
    - двигателяengine performance
    - двигателя, высотные — engine altitude performance
    -, дроссельные — throttle performance
    зависимость тяги (мощности) двигателя от оборотов, или расхода топлива.
    -, крейсерские (параграф разд. 5 рлэ) — route data
    -, летные — performance
    летные свойства ла, выраженные количественными величинами (напр., скорость, скороподъемность, потолок, дальность полета, нагрузки), — the flying properties of an aircraft which can be expressed quantitavely (e.g. max, speed, rate of climb, ceiling, range, loads).
    -, летно-тактические (боевые) — combat performance

    thrust augmentation is used to improve the aircraft combat performance.
    -, летно-технические — performance
    -, летные (раздел 5 рлэ) — performance
    данный раздел должен включать следующие параграфы: — the order of presentation in this section should be as follows:
    общие сведения, взлетные характеристики, максимальный взлетный вес в зависимости от высоты (давления) и температуры на аэродроме. градиенты (начального) набоpa высоты, длина летной полосы (в направл, взлета), характеристики чистой траектории начального набора высоты, крейсерские характеристики и аналогичные сведения, касающиеся посадки ла, а также дополнитепьные специальные характеристики. — general, takeoff procedures and speeds, takeoff wat curves, takeoff climb gradients, takeoff field length, net takeoff flight path data, en route data. landing procedures and speeds.landing wat curves. landing climb gradients. landing field lengths. additional special performance data.
    - материала, прочности — material strength properties
    -, мощностные (дв.) — power characteristics
    - набора высотыclimb performance
    -, основные — principal characteristics
    - отработкиresponse characteristics
    - планированияgliding performance
    -, позволяющие эксплуатацию самолета с коротких аэродромов, взлетно-посадочные — small-field /short-field/ performance
    - полета в зоне ожиданияholding performance
    - полета по маршруту (пара. еп рлэ) — route data
    - по наддуву (пд) характеристики, снимаемые при стендовых испытаниях, с изменением величины наддува. — manifold pressure characteristics
    -, посадочные — landing performance
    -, посадочные (параграф разд. 5 рлэ) — landing procedures and speeds
    - при коротком разбеге н пробеге, взпетно-посадочные — short takeoff/landing (stol)type takeoff and landing performance
    - процесса горенияcombustion characteristics
    - прочности материаловmaterial strength properties

    material strength properties must be based on tests.
    - самолета, летные — airplane performance
    летные характеристики свойства ла, выраженные в количественных величинах, — airplane performance are flying properties of an aircraft which can be expressed quantitatively.
    - силовой установкиpower plant performance
    -, технические — specifications
    особенности, касающиеся (напр.) конструкции ла. — particulars concerning the design of aircraft.
    - технического обслуживания — maintenance performance parameters /factors/
    - установившегося горизонтального полетаsteady level flight performance
    - чистого набора высоты — net climb performance a height attained using net climb performance.
    -, эксплуатационные отрицательно влиять на летные x. — operating characteristics adversely affect performance
    снимать х. — take characteristics
    заявитель может вручную регулировать работу двигателя no мощности (тяге) при съеме характеристик для проверки их соответствия расчетным. — the applicant may manually control the engine power, and thrust while taking the characteristics to check the performance.
    устанавливать x. — establish characteristics
    каждый двигатель должен пройти контрольные испытания для определения (установления) мощностных характеристик. — each engine must be subjected to calibration tests necessary to establish its power characteristics.

    Русско-английский сборник авиационно-технических терминов > характеристики

  • 4 характеристика

    характеристика сущ
    performance
    акустическая характеристика
    acoustic property
    акустическая характеристика двигателя
    engine acoustic performance
    антидетонационная характеристика
    antiknock rating
    аэродинамическая характеристика
    1. aerodynamic performance
    2. aerodynamic characteristic 3. aerodynamic property аэродинамические характеристики
    aerodynamic behavior
    аэроупругая характеристика
    aeroelastic characteristic
    балансировочная характеристика
    trim characteristic
    взлетная характеристика
    1. takeoff ability
    2. takeoff performance взлетно-посадочные характеристики
    take-off and landing characteristics
    вибрационная характеристика
    vibration characteristic
    влиять на летные характеристики
    effect on flight characteristics
    высотная характеристика
    altitude performance
    высотно-скоростная характеристика
    altitude-airspeed performance
    высотные характеристики двигателя
    engine altitude performances
    диапазон полетных характеристик
    flight-perfomance range
    дренажные характеристики
    drainage characteristics
    дроссельная характеристика
    1. throttle performance
    2. throttle characteristic 3. thrust curve задавать характеристики
    schedule the performances
    информация о летно-технических характеристиках
    performance information
    координаты характеристики
    data on the performance
    летная характеристика
    1. flight performance
    2. flying property летно-технические характеристики
    1. performance codes
    2. aircraft performance characteristics летно-технические характеристики воздушного судна
    aircraft performances
    летные характеристики
    flight characteristics
    метод проверки характеристик
    perfomance check method
    навигационная характеристика
    navigation performance
    обобщенные характеристики по шуму
    generalized noise characteristics
    ограничение характеристик
    perfomance limitation
    основные характеристики
    basic characteristics
    отрицательно влиять на характеристики
    adversely affect performances
    оценка летных характеристик
    performance evaluation
    падающая характеристика
    falling response
    подвергать сомнению соответствие характеристик нормам летной годности
    reflect on airworthiness
    полет для проверки летных характеристик
    performance flight
    пологая характеристика
    flat response
    помпажная характеристика
    surge characteristic
    посадочная характеристика
    landing performance
    посадочные характеристики
    landing characteristics
    Постоянный комитет по летно-техническим характеристикам
    Standing Committee of Performance
    противоштопорные характеристики
    spin-recovery characteristics
    рабочая характеристика
    operating characteristic
    расчетная характеристика
    design characteristic
    скоростная характеристика
    1. thrust versus speed curve
    2. speed ability снижение характеристик
    performance loss
    снимать характеристики
    1. take characteristics
    2. check performances стендовая характеристика
    installation features
    технические характеристики зональной навигации
    area navigation capability
    тормозная характеристика воздушного судна
    1. aircraft braking performance
    2. aircraft stopping performance требования к эксплуатационным характеристикам
    operating performance requirements
    тяговая характеристика
    thrust characteristic
    тяговые характеристики
    propulsion performance characteristics
    усталостная характеристика
    fatigue property
    устанавливать характеристики
    establish the characteristics
    установленные характеристики
    specified characteristics
    уточнение летно-технических характеристик
    perfomance correction
    ухудшение характеристик
    deterioration in performance
    характеристика в зоне ожидания
    holding performance
    характеристика ВПП
    runway performance
    характеристика выдерживания высоты
    height-keeping performance
    характеристика затухания
    decay characteristic
    характеристика излучения звука
    sound emission characteristic
    характеристика набора высоты при полете по маршруту
    en-route climb performance
    характеристика планирования
    gliding performance
    характеристика по наддуву
    manifold pressure characteristic
    характеристика поперечной устойчивости
    lateral characteristic
    характеристика процесса горения
    combustion characteristic
    характеристика прочности материала
    material strength property
    характеристика путевой устойчивости
    directional stability characteristic
    характеристика расхода
    flow characteristic
    характеристика расхода воздуха
    air flow characteristic
    характеристика рентабельности
    break-even point
    характеристика сваливания
    stall characteristic
    характеристика спектра
    spectral characteristic
    характеристика сцепления поверхности ВПП
    runway friction characteristic
    характеристика топлива
    fuel property
    характеристика управляемости
    1. control characteristic
    2. handling characteristic характеристика устойчивости
    stability characteristic
    характеристика холостого хода
    no-load characteristic
    характеристика чувствительности к звуковому давлению
    pressure response characteristic
    характеристики авторотации
    windmilling performance
    характеристики двигателя
    engine performances
    характеристики короткого летного поля
    short-field performances
    характеристики наведения по линии пути
    track-defining characteristics
    характеристики на разворотах
    turn characteristics
    характеристики нарастания
    onset characteristics
    характеристики по шуму
    noise characteristics
    характеристики приема
    acceleration characteristic
    характеристики скороподъемности
    climb performances
    характеристики уровня безопасности
    safe features
    характеристики, установленные техническим заданием
    scheduled performances
    частотная характеристика
    frequency response
    эксплуатационная характеристика
    operating performance

    Русско-английский авиационный словарь > характеристика

  • 5 устройство защиты от импульсных перенапряжений

    1. voltage surge protector
    2. surge protector
    3. surge protective device
    4. surge protection device
    5. surge offering
    6. SPD

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > устройство защиты от импульсных перенапряжений

  • 6 режим

    режим м. Arbeitsweise f; Betrieb m; Betriebsart f; Betriebsweise f; Führung f; Gang m; элн. Mode f; Modus m; Operation f; Regime n; Verfahren n; Verfahrensweise f; Verhalten n; Verhältnisse n pl; Verlauf m; Zustand m
    режим м. горения Feuerung f; Flammenführung f
    режим м. заливки мет. Gießmethode f; Gießverfahren n
    режим м. замочки Weicharbeit f; Weichordnung f
    режим м. запрета выч. Sperrbetrieb m; выч. Sperre f
    режим м. нагрева Anwärmverfahren n; тепл. Erhitzungsverfahren n; Temperaturführung f beim Wärmen
    режим м. непосредственного управления выч. abhängiger Betrieb m; gedoppelter Betrieb m; on-line Betrieb m
    режим м. обеднения канала носителями Betriebsweise f mit Verarmungsrandschicht; Betriebsweise f mit Verarmungsschicht; Entblößungssteuerung f
    режим м. ожидания выч. Wait-Zustand m; выч. Wartestatus m; выч. Wartezustand m
    режим м. опроса выч. Abfragebetrieb m; Abrufbetrieb m
    режим м. отжига Glühkurve f; Glühverfahren n; Glühzyklus m; Temperaturhaltung f beim Glühen
    режим м. передачи Übertragungsbetrieb m; Übertragungsmodus m
    режим м. печи Ofenbetrieb m; Ofenführung f; мет. Ofengang m
    режим м. плавки Schmelzbedingungen f pl; мет. Schmelzführung f; Schmelzgang m; Schmelzverlauf m
    режим м. поиска выч. Locate-Modus m; Sucharbeit f
    режим м. потока Strömungsverhältnisse n pl; Strömungsvorgang m; гидрод. Strömungszustand m
    режим м. пуска Anlaufzustand m; Schaltbetrieb m
    режим м. работы Arbeitsweise f; Betriebsart f; Betriebsverhalten n; Betriebsweise f; Betriebszustand m; Fahrweise f; Modus m
    режим м. работы печи Ofenbetrieb m; Ofenführung f; Ofengang m
    режим м. работы реверсивного вентильного преобразователя с отсутствием уравнительных токов эл. kreisstromfreier Betrieb m
    режим м. резания Schneidbedingungen f pl; Schnittbedingungen f pl; Zerspanungsbedingungen f pl; Zerspanungsdaten pl; Zerspanungswerte m pl
    режим м. совместной работы выч. gekoppelte Arbeitsweise f; gekoppelter Betrieb m; on-line Betrieb m
    режим м. топки Feuerführung f; Flammenführung f
    режим м. ускорения (напр., ротора турбины) Beschleunigungsverhalten n
    режим м. шлака Schlackenarbeit f; мет. Schlackenführung f; Schlackengang m
    режим м. эксплуатации выч. Betriebsart f; Betriebsverhältnisse n pl; Betriebsweise f; Betriebszustand m

    Большой русско-немецкий полетехнический словарь > режим

См. также в других словарях:

  • характеристики процесса горения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN combustion characteristics …   Справочник технического переводчика

  • характеристики регулирования процесса горения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN combustion control characteristics …   Справочник технического переводчика

  • БАЛЛИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ — параметры, определяющие закономерности развития процесса выстрела (пуска ракеты) и движения снаряда (мины, ракеты и др.) в канале ствола (на пуск. установке) и на траектории. К осн. внутрибаллистич.… …   Энциклопедия РВСН

  • показатель — 3.7 показатель (indicator): Мера измерения, дающая качественную или количественную оценку определенных атрибутов, выведенную на основе аналитической модели, разработанной для определенных информационных потребностей. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Порошковое пожаротушение — Порошковый огнетушитель Порошковое пожаротушение  тушение пожара огнетушащим порошковым составом. В ряде случаев порошки являются единственным огнетушащим веществом, пригодным для тушени …   Википедия

  • источник — 3.18 источник (source): Объект или деятельность с потенциальными последствиями. Примечание Применительно к безопасности источник представляет собой опасность (см. ИСО/МЭК Руководство 51). [ИСО/МЭК Руководство 73:2002, пункт 3.1.5] Источник …   Словарь-справочник терминов нормативно-технической документации

  • Горение — спички …   Википедия

  • Сгорание — Горение спички Горение натрия Горение  это сложный физико химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Приближенно можно описать природу горения как бурно …   Википедия

  • Жидкостный ракетный двигатель — (ЖРД)  химический ракетный двигатель, использующий в качестве ракетного топлива жидкости, в том числе сжиженные газы. По количеству используемых компонентов различаются одно , двух и трёхкомпонентные ЖРД. Содержание 1 История …   Википедия

  • ЖРД — Жидкостный ракетный двигатель (ЖРД) химический ракетный двигатель, использующий в качестве ракетного топлива жидкости, в том числе сжиженные газы. По количеству используемых компонентов различаются одно , дву и трёхкомпонентные ЖРД. Всемирно… …   Википедия

  • Жрд — Жидкостный ракетный двигатель (ЖРД) химический ракетный двигатель, использующий в качестве ракетного топлива жидкости, в том числе сжиженные газы. По количеству используемых компонентов различаются одно , дву и трёхкомпонентные ЖРД. Всемирно… …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»